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The transient behaviour of a large bubble
in a vertical tube
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Novel experimental results are presented of the transient motion of a large spherical-
cap bubble and of the displaced liquid motion in a closed cylindrical vertical tube
of finite length. This is a fundamental fluid mechanics problem and has direct
application to Space flight where liquids in fuel tanks are exposed to large changes in
acceleration. The initial spherical cap shape is produced by a thin membrane which
can be considered equivalent to a large surface tension. The bubble is released by
puncturing the membrane which, subsequently, retracts in a time of order 1 ms. Apart
from the generation of shear instabilities of very short wavelength, the membrane
withdrawal has a negligible effect on the bubble and liquid motions and can thus
be considered instantaneous. The displacements of the bubble, the annular liquid
sheet and the geyser front were determined from high-speed video images from
which velocities and accelerations were calculated. The results are compared with a
theoretical model of the unsteady bubble and sheet velocities.

1. Introduction
The steady-state behaviour of a large bubble rising in a vertical tube is well-known

(Batchelor 1967). In a vertical circular tube which is closed at its top and open at its
lower end, the steady-state rise velocity of the bubble is obtained from a local analysis
of the flow around the cap of the bubble (Dimitrescu 1943; Davies & Taylor 1950).
The observed bubble velocity, Ub = 0.48

√
gR, where g is the gravitational acceleration

and R the tube radius, is close to the theoretical value determined from local analysis,
neglecting viscous effects. The downward velocity of the annular sheet is given by
free-fall conditions and is related, by mass continuity, to the bubble velocity via the
sheet thickness d .

In most practical applications the main interest is in the rate at which the tube
is emptied of its liquid when it is suddenly opened at its lower end. For long tubes
knowledge of the steady-state behaviour is in this case adequate, because the distance
to reach steady-state conditions is of the order of the tube diameter (Héraud 2002).
However, there are situations where the tube is short and the transient behaviour must
be taken into account. Naturally, this behaviour will depend on the initial conditions,
that is on the shape of the initial interface. During Space flight for instance liquid
propellants in fuel tanks are exposed to micro-gravity conditions and surface tension
is then the dominant force which acts on the liquid. In this case, the shape of the liquid
surface depends on the residual acceleration with respect to the surface tension force,
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the ratio of which is expressed by the Bond number (see equation (3.7)). Depending
on the residual perturbations, liquid can accumulate anywhere in the tank and often
accumulates at the front of or at the top of the tank, i.e. opposite the fuel outlet.
Before any restart of the engine it is necessary to position the liquid at the outlet at
the bottom of the tank and this is done by applying a pre-acceleration. The situation
we consider is that of a vertical closed circular container, partially filled with liquid
which, in the initial state, is in the upper section of the container. The surface shape
is nearly hemispherical and concave with respect to the vector normal to the liquid
surface pointing toward the gas. This liquid is then suddenly exposed to a downward
acceleration.

Experiments of this type, where a liquid, initially under micro-gravity conditions, is
suddenly exposed to an acceleration, were conducted by Salzman & Masica (1968)
and Salzman, Masica & Lacovic (1973) in a 145 m drop tower. These experiments
focused on more global aspects of practical interest and, specifically, on the geyser
which is formed when the liquid reaches the bottom of the container. Under terrestrial
conditions such experiments have never been attempted, because the passage from a
low to high Bond number state has to be accomplished in a very short time which
raises considerable experimental difficulties.

It is shown in this paper that these difficulties can be overcome in the laboratory
under terrestrial conditions by using membranes which simulate high surface tension.
In particular, it is possible to maintain an initial state with the liquid at the
top of the tank and with predefined curvature of the free liquid surface. In pre-
liminary experiments we investigated different radii of curvature, ranging from
infinity (horizontal membrane) to R, including convex shapes. When the membrane
is horizontal, the classical Rayleigh–Taylor instability is observed. However, a slightly
concave shape leads to bubble formation similar to that presented here. The time for
the retreat of the membrane after its rupture is of order 1 ms, hence suddenly exposing
a convex air cavity to gravity. Aside from its practical interest, this problem raises a
number of fundamental questions, some of which will be considered in this paper.
In § 2 the experimental set-up and procedures are described. A theoretical analysis
of the bubble and liquid sheet motions is presented in § 3. The experimental results
concerning the bubble shape and its dynamics as well as the liquid sheet dynamics,
including geyser formation, are discussed in § 4.

2. Experimental set-up
The apparatus shown schematically in figure 1, consists of two cylindrical tubes of

radius R = 25 mm closed at one end and of lengths L1 and L2 which can be varied
independently from 5 to 70 mm. In the present experiment the tube lengths were
L1 = 25 mm and L2 = 56 mm. In figure 1, h1 and h2 refer to the initial liquid contact
line which is either at the intersection of the two tubes or slightly above (h1 � L1 and
h2 � L2). The lower tube is positioned with the open end upward and the upper one
placed on top with the open end pointing downward. A stretched membrane is placed
between the open ends of the tubes and the cylinders are then clamped together.
Various membranes were tested and the final choice was a pure latex membrane
of 7 µm in thickness. In preparing the experiments, an auxiliary frame was used to
stretch the membrane evenly and always at the same rate. Once the membrane was
in place, the liquid was introduced in the top tube separated by the membrane from
the lower tube which contained gas (air for the present experiments). The liquid
used was tap water with a surface tension σ = 70 dyn cm−1. Some experiments were
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Figure 1. Experimental conditions and relevant dimensions of the cylindrical container of
radius R: (a) initial conditions with the membrane in place; (b) conditions after rupture of the
membrane indicating the rising bubble and the falling liquid sheet.

conducted with FC-77 of ρ = 1.78 g cm−3, σ = 15 dyn cm−1 and kinematic viscosity
ν = 7.2×10−3 cm2 s−1 at 25 ◦C. The air pressure in the lower cylinder was then slightly
increased to obtain the desired radius of curvature Rm of the membrane. In the
present experiments Rm ≈ R and h1 = 28 mm is slightly larger than L1. The liquid
fill ratio could be varied by changing h1 (L1) with respect to h2 (L2). At time t =0
the membrane was punctured in the middle by a thin pointed rod introduced from
below. The retreat of the membrane occurred in about 1 ms. During this retreat a
Kelvin–Helmholtz instability of very short wavelength was produced at the curved
liquid surface which caused some local air entrainment and small bubble formation
near the liquid surface. Because of its very short wavelength compared with the
Rayleigh–Taylor instability wavelength or the cylinder radius, the Kelvin–Helmholz
instability does not affect the liquid reorientation phenomena; it also decays relatively
rapidly. For an experiment to be successful, a complete rupture of the membrane is
absolutely necessary. After rupture, the remaining, very small, thin membrane pieces
stuck to the wall and had practically no effect on the sheet motion. Moreover,
there was also an annular gap of 1 mm in height and 3 mm depth between the
two cylindrical tubes which allowed most of the membrane to withdraw completely.
In some cases the membrane did not rupture completely and a segment remained
attached. When this happened, the flow was asymmetric and it was easy to verify
after each experiment whether or not complete rupture had occurred and eliminate
experiments with incomplete rupture. Images were taken with a high-speed digital
camera, Speed Cam Visariao 1500, at 500 frames per second. For the investigation of
the initial retreat of the membrane, images at 104 frames per second were taken. For
contrast improvement uniform backlighting was used. From these images the interface
position and its shape as a function of time were determined by edge detection using
a 3 × 3 sobel filter provided by MatlabTM.

3. Theoretical analysis
When viscous effects can be neglected, a large gas bubble starting from rest in

an unbounded liquid experiences an acceleration of 2g, hence a velocity increase
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U (t) = 2gt (Batchelor 1967). In reality the velocity reaches a steady state because the
bubble is subjected to a drag which is large when the bubble Reynolds number is large
(Davies & Taylor 1950). The bubble shape changes during the acceleration phase and
depending on the Bond number this change in shape may be non-monotonic giving
rise to possible velocity oscillations. The present case is similar to this situation, except
that the liquid is bounded and the bubble is actually a slug. Since the gas density
ρa � ρ, ρ being the density of the liquid, the gas inertia can be neglected compared
with the inertia of displaced liquid mass M0. The equation of motion is then

kaM0U̇ b = gM0 − D, (3.1)

where ka is the added mass coefficient, M0 =C1ρπR3 and D = ρCDπR2 1
2
U 2

b , where CD

is the drag coefficient. The solution of equation (3.1) is

Ub

Ubs

=
et/T − 1

et/T + 1
, (3.2)

where the time constant T = tb
√

C1k2
a/2CD and the characteristic time scale tb =

√
R/g.

The ratio CD/C1, obtained from the steady-state velocity of a large bubble in a vertical
cylindrical tube, Ubs = 0.48

√
gR, is CD/C1 ≈ 8.6. The added mass coefficient is taken

as ka = 0.5 assuming a hemispherical shape. This value of ka gives at t =0, when
D =0, a bubble acceleration of 2g. Note that the steady-state velocity is obtained
from a local analysis of potential flow around the bubble cap (Davies & Taylor 1950;
Batchelor 1967) and no drag is introduced. However, the bubble is subject to a drag,
which needs to be introduced in the force balance, equation (3.1).

The front velocity of the descending annular liquid sheet Us1 (see figure 1 for
definition) for 0 � x � h1 is given by free-fall conditions:

Us1 = −
√

2g(h1 − x). (3.3)

The characteristic sheet time scale is then ts =
√

h1/g and the velocity scale is
U1 =

√
2gh1. After the front of the sheet has reached the bottom, the sheet velocity

will change to

Us = −
√

2g(x1 − x), (3.4)

where x1(t) is the distance from the bottom to the nose of the bubble (see figure 1).
The maximum sheet velocity is obtained at x = 0 when x1 = h, which corresponds to
the total tube height. In the steady state the relation between Us and Ub is given by
mass conservation and is

Us ≈ 0.48
√

gR

1 − (R − d/R)2
, (3.5)

where d is the sheet thickness at position x and is of order d/R ≈ 0.17
√

R/(x1 − x)
(Batchelor 1967). In equation (3.5) it was assumed that (d/R)2 � 1 which is the
case. Surface tension does not affect the bubble nor the sheet velocity (except for
the incipient sheet motion and possible front speed oscillations, see § 4.3). It has a
stabilizing effect on possible perturbations of the bubble cap and determines the
wavelength of a possible instability of the front of the falling liquid sheet. The geyser
front which emerges when the liquid converges at the centre of the bottom plate is
also affected by surface tension. The characteristic parameter is the Weber number

We =
ρU 2R

σ
, (3.6)
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Figure 2. Images of the flow development: (a) a focus on the Kelvin–Helmholtz instability
at t = 1.2ms after membrane rupture, caused by the withdrawal of the membrane; (b) front
of the downward moving liquid sheet at t = 68 ms; (c) geyser at t = 184ms. The experimental
conditions are: R = 25 mm, h1 = 28 mm, h2 = 56 mm, Rm = 23.4 mm. The liquid is tap water at
22 ◦C.

where U is the velocity either of the bubble Ub or of the falling sheet or of the
rising geyser. The corresponding characteristic Bond numbers are obtained by simply
substituting the respective expressions for U . A characteristic liquid reorientation
Bond number is therefore

Bo =
ρgRh

σ
(3.7)

and the characteristic Bond number of the bubble, which gives an indication of the
stability of the bubble cap, is

Bob =
ρgR2

σ
. (3.8)

Viscous effects with respect to surface tension forces, expressed by the Ohnesorge
number, Oh = ρν2/σR < 10−3, can be ignored, where ν is the kinematic viscosity.

4. Experimental results
4.1. Qualitative observations

The evolution of the flow is shown in figure 2, starting with the rupture of the
membrane at t = 0 (figure 2a) up to geyser formation (figure 2c). The reorientation
Bond number in these experiments is Bo = 300 and Bob = 89. The time of withdrawal
of the membrane is tm ≈ 1.1ms which is two orders of magnitudes less than the
characteristic bubble time scale of tb =

√
R/g. The mean velocity of membrane

withdrawal Um is of order 0.5πRm/tm ≈ 35 m s−1 and the thickness of the shear
layer, produced at the liquid surface by this withdrawal, varies from practically zero
at the centre to δ ∼ 7

√
νtm ∼ 0.2 mm near the tube wall. The corresponding Reynolds

number is Re = Umδ/ν � 7 × 103. Thus, a Kelvin–Helmholtz instability of wavelength
λKH can be expected. The observed spacing of the Kelvin–Helmholtz billows near
the tube wall (see figure 2a) agrees with the estimated wavelength. These small-scale
perturbations have no effect on the initial flow development because any other length
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Figure 3. (a) Evolution of the bubble shape: dashed line t =0 (start of the membrane rupture);
solid line t = 2ms; dash dotted line t = 20 ms. (b) Evolution of the outer edge during the first
1ms at time intervals of 0.1ms. The lower, dashed line corresponds to the membrane shape at
t = 0. Note that (a) and (b) correspond to two different experiments which is the reason why
the maxima of the membrane are slightly different.

scale is two orders of magnitude larger than λKH. Besides, these billows decay in a
time of about 5tm. The main effects of this instability are the entrainment of a small
gas volume, creating small bubbles (seen in figure 2b), and a small initial change (of
the order of λKH after rupture) of the apparent bubble contour which is variable with
radius R.

Figure 2(b) indicates the development of an instability of azimuthal wavelength
of order πR (in the case of water) for the front of the falling liquid sheet. Under
free-fall conditions, surface tension should prevent the development of an instability.
This instability is likely to arise from the initial acceleration of the liquid sheet. On
the other hand, the bubble cap is seen to remain stable. The Weber number from
equation (3.6) is about 20 if calculated with R. If it is expressed in terms of the cap
radius after bubble adjustment, it falls to less than about 7 (the radius of curvature
of the bubble is about 0.6R). Stability of the bubble cap is, therefore, to be expected.
In experiments with FC-77 the bubble cap is less smooth but the mean motion of
the bubble is not different from that of water (the density does not enter the bubble
motion). The geyser, shown in figure 2(c) is almost at its maximum height and is
exposed to a deceleration of −g which means that the geyser front is in a nearly
weightless state. Surface tension then controls the size of the surface corrugations and
the size of a precursor geyser.

4.2. Evolution of the bubble shape

4.2.1. Bubble shape

From high-speed video images, recorded at a frequency of 500 frames per second,
the time evolution of the bubble shape was determined by the above-mentioned
edge detection method. The evolution of the bubble shape, obtained after optical
corrections in the radial and axial directions, is shown in figure 3(a) for t = 2 ms
and t = 20 ms. The dashed line corresponds to the membrane shape. It is seen from
figure 3(a) that for longer times the radius of curvature decreases and the sheet
thickness increased at x = h1 increases. The time t = 20 ms corresponds closely to the
adjustment time ta of the bubble shape. For water this time is of the same order as
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the sheet motion delay time td when the sheets leading edge starts to move downward.
For FC-77 the delay time is considerably shorter (see § 4.3).

In figure 3(a), the first large change in interface position during a time interval of
2 ms from the membrane shape (dashed line) to the free liquid surface (solid line) is
partly an apparent change due to the growth of the Kelvin–Helmholtz instability. This
change is shown in figure 3(b) during the first 1 ms, where it is seen that the change
in the outer edge increases with radius and decreases to zero close to the wall where
the membrane velocity is again zero. The interface is shown at 0.1 ms intervals by the
solid lines, going from the centre toward the wall, between the dashed curve and
the outer solid line, which corresponds to the interface at 1 ms after rupture. Toward
the tube wall the optical correction of the visible outer edge, shown in figure 3(b),
is incomplete because the optical properties of the membrane there were poor and
so ignored. For this reason, the interface does not end at r/R = 1 as it should. In
order to avoid confusion we show, therefore, in figure 3(a) the outer edge when the
membrane is in place (dashed line) only up to r/R ≈ 0.8. Even for larger times the
optical correction near the wall remains somewhat uncertain. It is seen in figure 3(a)
that at time t =20 ms the sheet thickness at x ≈ h1 is about 0.15R.

4.2.2. Bubble velocity

For the determination of the bubble velocity and its acceleration, a mean value of
the displacement of the bubble edge between 0 <r/R < 0.20 was used. This acts as a
filter which is applied because the bubble shape is not completely smooth and space
and time intervals are very small; it is well-known that small errors in displacement
cause large changes in acceleration. The displacement of the central part of the bubble,
the calculated velocities and the accelerations are shown in figure 4 as a function of
the dimensionless time t/tb.

In figure 4(a) the measured bubble displacement corresponds to the open symbols.
The dashed line indicates a slightly smoother displacement provided by a cubic spline
fit. For comparison the theoretical displacement, obtained from integration of equation
(3.2), is shown by the solid line. The agreement can be considered as excellent up to
t/tb ≈ 2.5 except near the origin where the predicted displacement is slightly less than
the observed one. For t/tb > 2.5 the bubble is influenced by the upper end of the tube
and starts to slow down. The bubble velocity given in figure 4(b), non-dimensionalized
by the steady-state velocity, was obtained by a five-point differentiation of the cubic
spline fitted curve. It can be seen that the initial velocity increase is more rapid than
predicted by equation (3.2) but then falls slightly below the theoretical predictions
until it increases to the steady-state velocity at t ≈ tb. However, small oscillations in
velocity around the steady state value persist.

The corresponding acceleration shows larger fluctuations because the second time
derivative of the bubble displacement amplifies the oscillations as well as small errors
in the displacement at time increments of 0.002 s. Figure 4(c) shows, nevertheless, that
the initial acceleration is at least 2g. It is not possible to give a definite value for the
initial acceleration but the initial velocity increase (see figure 4 b) suggests that the
acceleration is somewhat larger than the theoretical value 2g. This would mean that
the added mass coefficient is less than 0.5, which is plausible because of the change
in bubble shape and the presence of the wall which limits the liquid motion. After
the maximum, the acceleration drops rapidly to zero and even to negative values,
probably because the displaced liquid is influenced by the tube sidewall and the bubble
shape must change. Then, the acceleration fluctuates around zero in accordance with
the velocity fluctuations. The difference between the observed bubble dynamics and
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Figure 4. Dynamics of the rising bubble. (a) Bubble displacement as a function of
dimensionless time t/tb . The symbols are measured values and the dashed line is a cubic spline
fit. (b) Calculated bubble velocity and (c) bubble acceleration (dashed lines). The solid lines in
(a–c) are the theoretical variations given by equation (3.2) which is integrated for displacement
and differentiated to obtain accelerations. The reference velocity is Ubs = 0.48

√
Rg =23.9 cm s−1

and the time scale is tb =
√

R/g = 50ms. The liquid is water but results are the same for other
liquids.

that predicted by the model during the adjustment phase is to be expected because
the theoretical model assumes constant bubble shape, constant drag and constant
added mass coefficient which is certainly an oversimplification. The comparison is
nevertheless useful and interesting.

In § 4.2.1 we mentioned that the bubble shape adjusts in a time ta to the steady-state
shape. Figure 5 shows that the bubble oscillates around the steady-state shape but
the adjustment is nearly completed at ta ≈ 0.4tb when the acceleration is close to zero.
This gives ta ≈ 20 ms.

4.3. Falling sheet velocity

The displacement of the descending liquid sheet was determined from a manual
edge detection of the front between the two noses (see figure 2b). The velocity and
acceleration were also determined from a numerical five-point differentiation of the
cubic spline fit to the measured displacement. The results are shown in figure 5 for
the same experimental conditions as in figure 4 as well as for FC-77. Here, the
velocity, shown in figure 5(b), is non-dimensionalized by U1 =

√
2gh1 and the time

by ts =
√

h1/g. What can be clearly seen in figures 5(b) and 5(c) is that the onset
of the liquid sheet motion is delayed by a time td/ts ≈ 0.38 when the liquid is water
and by td/ts =0.16 when the liquid is FC-77. This time delay td was determined
by fitting the integrated form of equation (3.3), which is x/h1 = 1 − 0.5((t − td)/ts)

2
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the displacement of water, where the solid line leaves the theoretical displacement according
to x/h1 = 1 − 0.5(t/ts)

2; (b) the corresponding non-dimensional velocity versus time; (c) the
corresponding non-dimensional acceleration. U1 =

√
2gh1 = 75.1 cm s−1, ts =

√
h1/g = 53ms. In

(b) the solid line is shifted by td (for water) to show the (small) oscillations of the velocity for
the entire free fall. These oscillations are amplified when the acceleration is considered in (c).

to the experimental points. Then, the sheet accelerates rapidly and even exceeds g,
after which it returns and oscillates around g (probably related to capillarity). When
the liquid sheet is in free fall conditions, a fluid element within the liquid sheet is
in a weightless state due to inertia and the compensation of the body forces. The
instability of the sheet front which develops into the noses (figure 2b) must, therefore,
be initiated near the origin when the sheet starts to accelerate. During the free fall
the noses no longer grow.

Now coming back to the time delay, this is most likely caused by surface tension
and possibly contact angle effects. After membrane withdrawal, the Bond number of
the sheet Bos = ρgd2/σ is small and at the sheet leading edge surface tension forces
initially dominate over gravitational forces. We can assume that the sheet starts to
move when Bos ∼ 1. This gives a thickness of the sheet’s leading edge dc ∼

√
σ/ρg

which is the capillary length. The time needed to reach this thickness, which is
referred to as the incipient sheet motion delay time td , is directly related to the
bubble motion: td ∼ dc/Ub ∼

√
σ/2ρgR. Since Ub is independent of liquid properties,

td depends only on
√

σ/ρ for fixed g and R. The measured ratio of tdwater
/tdFC−77

is 2.8
and the corresponding ratio of

√
σ/ρ is 2.9. The ratio td/tb ∼ dc/R and experiments

give td/tb ≈ 4dc/R and td/ta ≈ 10dc/R. Viscous effects on the sheet motion remain
negligible because the sheet Reynolds number Res = Usd/ν is of order 103.
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Figure 6. Geyser tip dynamics: (a) displacement, (b) velocity, and (c) acceleration, as a
function of non-dimensional time (t − t1)/ts , where t1 is the time when the sheet front arrives at
the bottom. Position and velocity are non-dimensionalized with the height h and characteristic
sheet front velocity U1 =

√
2gh1 respectively. The time �t refers to the delay between sheet

impact and geyser emergence, which depends on the tube radius.

It is seen from figure 5(c) that as the sheet approaches the bottom plate the
acceleration decreases and the non-dimensional velocity does not quite reach −1 (see
figure 5b) as it should ideally. As the bottom is approached the noses arrive first
and start to turn inward and this seems to affect the velocity of the whole sheet.
Furthermore, if the sheet were to accelerate uniformly with g from x = h1 to x =0,
shown in figure 5 by the solid lines, the time needed to reach the bottom would
be t1 =

√
2h1/g according to equation (3.3). The experimental results show that the

actual time is larger due to the time lag related to surface tension effects as discussed
above. In figure 4(b) it is seen that for water this time is close to the time needed for
the bubble to adjust to the steady-state shape but is considerably smaller for FC-77.

4.4. The rising geyser

After the sheet has reached the bottom and the liquid merges at the centre, a geyser
develops. In figure 6 the geyser tip position (a), its velocity (b) and its acceleration
(c) are plotted as a function of non-dimensional time (t − t1)/ts , where t1 is the time of
arrival of the sheet front at the bottom which is different for water and FC-77 because
td is different. From figure 6 it is seen that the geyser emerges when (t − t1) = �t with
�t being of order R/

√
2gh1. The experimental value is �t ≈ 0.3R/

√
2gh1.

In figure 6 the position is non-dimensionalized by the total tube height h and the
velocity by U1 =

√
2gh1 which allows a comparison of the geyser velocity with the

maximum sheet front velocity. Note that the geyser velocity is initially larger than
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the maximum free-fall sheet front velocity. According to equation (3.4), the sheet
velocity at x = 0 has to increase from

√
2gh1 to

√
2gx1 after the sheet front has arrived

at the bottom. Using conservation of momentum and flow rate, it is easily shown that
the geyser velocity near the bottom is initially equal to the sheet velocity at x = 0.
Accordingly, the geyser diameter near the bottom is Rg ≈

√
2Rd ≈ 0.5R. Figure 6(b)

shows that the geyser front velocity initially increases and then decreases with time
and goes to zero when the geyser is near its maximum height. There is, actually, a
slight overshoot in height (see figure 6a) followed by a small negative velocity. Then,
the geyser height remains nearly constant up to about (t − t1)/ts ≈ 5 and collapses
thereafter when the liquid in the sheet is nearly fully drained. The acceleration reaches
initially about g and then decreases to less than −g before it increases again. This
irregular behaviour is caused by the nose of the geyser (see figure 2c) which changes
in shape with small protrusions appearing and disappearing in a quasi-periodic
manner.

5. Conclusion
The investigation of the transient behaviour of a large bubble in a vertical cylindrical

tube and of the related motion of the liquid sheet has been made possible by a novel
technique developed for creating a clean initial state. This technique consists of the
use of a stretched thin membrane which, when punctured, retreats in a time negligible
compared with the characteristic times of bubble adjustment or liquid motion. The
remaining small membrane fragments have no effect on the liquid motion. The initial
curvature of the membrane can be varied at will to simulate any desired initial Bond
number. Previous studies of liquid reorientation were performed under micro-gravity
conditions in a drop tower which has the drawback that observation times are very
short and experiments are very costly and cumbersome. The results presented here,
which show the time evolutions of the bubble and the sheet and geyser velocities, are
novel. In particular it is shown that the bubble and sheet accelerations exceed initially
the Earth’s gravity g. For the rising bubble this is expected from the theoretical model
proposed but for the falling sheet front it is unexpected. The initial geyser velocity is
shown to be larger than the sheet front impact velocity at x = 0 which is consistent
with the change in relevant length scale from h1 before sheet impact to x1 after
impact. The theoretical model developed for the transient motion of the bubble and
the liquid sheet contains the relevant physics and provides a useful comparison for
the experimental results.
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